CONTINUUM OF CONTROL

Based on your experience

Appropriate High Viscosity

Multiple studies have identified viscosity as the most important factor influencing bone spreading cement within the vertebral body and leakage frequency.

Vexim Injectable Biomaterials have been formulated to reach a minimum viscosity of 350 Pa.s at injection time. This viscosity range has been proven to clinically reduce the risk of extravasation. Above these levels, an increase of viscosity does not result in better spreading patterns or cement interdigitation.

Sustained High Viscosity

Along with the required high viscosity, enough time to control and adapt the injection to the type of pathology and fracture is required. Vexim Injectable Biomaterials have been designed to allow an appropriate preparation (mixing and filling) while avoiding any waiting time.

The injection or dough phase has been designed to be exceptionally long for a comfortable management of the fixation phase even in the most complex fractures.

High Radio-opacity

Vexim Injectable Biomaterials contain Zirconium Oxide as radio-opacifiant to provide state-of-the-art visibility while injected. This leads to an increased safety during injection.

REFERENCES:


10. Le moniteur HOSPITALIER n°235 Avril 2011/ IFU
ANATOMICAL RESTORATION

Unlike SpineJack® which allows the practitioner to reduce the fracture independently of the bone quality, the fracture fixation depends on the existing bone quality.

PATHOLOGICAL FRACTURE

Underlying pathological VCF affect the trabecular bone properties, trabecular microarchitecture, and in consequence of these changes the mechanical behaviour of the trabecular bone. The Cohesion® Bone Cement is designed to address those pathological conditions. Improving the mechanical properties of the bone cement is one of the leading goals of the development team.

ROOT CAUSE: PATHOLOGICAL FRACTURE

- Osteoporosis: dense bone and high bone turnover.
- Osteolytic tumors: reduced bone volume and high bone turnover.
- Spinal trauma: mechanical stress and bone failure.

Back in shape

Vexim is the leading international manufacturer of all surgical equipment and aftercare devices for the treatment of pathological and traumatic vertebral fractures, vertebroplasty, kyphoplasty, and the stabilization of spinal bone tumours.

TRAUMATIC FRACTURE

In traumatic VCF with good bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

In pathological VCF with low bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

Cohesion® Bone Cement

Based on more than 50 years of excellent PMMA clinical history, Cohesion®, is a fully bioinert, high viscosity bone cement made with the latest generation of compounds.

The use of Titanium Dioxide instead of Barium Sulfate has been shown to limit the potential of bone osteolysis, thus potentially leading to better long term results. PMMA cement is not a glue, therefore getting the best and widest possible interdigitation will optimize the fracture stabilization.

Interface® Bone Fixation Composite

With only 20% of PMMA, Interface® Bone Fixation Composite is a pioneering formulation combining the lowest percentage of PMMA available in the market with the mechanical properties of the high viscosity Cohesion® Bone Cement.

The Interface® Bone Fixation Composite with 65% osteoconductive Hydroxyapatite (HA) crystal shape particles provide a scaffold with a composition very similar to bone making osteointegration possible. Interface® Bone Fixation Composite provides:

- Primary mechanical stability
- Long bone biological apposition

By improving bone cement's mechanical properties, the Cohesion® Bone Cement allows for more accurate and efficient surgical planning related to the treatment of pathological fractures and traumatic fractures. The Cohesion® Bone Cement is ideal for use in vertebroplasty, kyphoplasty, and for the stabilization of bone tumours.

TRAUMATIC FRACTURE

In traumatic VCF with good bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

In pathological VCF with low bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

Cohesion® Bone Cement

Based on more than 50 years of excellent PMMA clinical history, Cohesion®, is a fully bioinert, high viscosity bone cement made with the latest generation of compounds.

The use of Titanium Dioxide instead of Barium Sulfate has been shown to limit the potential of bone osteolysis, thus potentially leading to better long term results. PMMA cement is not a glue, therefore getting the best and widest possible interdigitation will optimize the fracture stabilization.

Interface® Bone Fixation Composite

With only 20% of PMMA, Interface® Bone Fixation Composite is a pioneering formulation combining the lowest percentage of PMMA available in the market with the mechanical properties of the high viscosity Cohesion® Bone Cement.

The Interface® Bone Fixation Composite with 65% osteoconductive Hydroxyapatite (HA) crystal shape particles provide a scaffold with a composition very similar to bone making osteointegration possible. Interface® Bone Fixation Composite provides:

- Primary mechanical stability
- Long bone biological apposition

By improving bone cement's mechanical properties, the Cohesion® Bone Cement allows for more accurate and efficient surgical planning related to the treatment of pathological fractures and traumatic fractures. The Cohesion® Bone Cement is ideal for use in vertebroplasty, kyphoplasty, and for the stabilization of bone tumours.

TRAUMATIC FRACTURE

In traumatic VCF with good bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

In pathological VCF with low bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

Cohesion® Bone Cement

Based on more than 50 years of excellent PMMA clinical history, Cohesion®, is a fully bioinert, high viscosity bone cement made with the latest generation of compounds.

The use of Titanium Dioxide instead of Barium Sulfate has been shown to limit the potential of bone osteolysis, thus potentially leading to better long term results. PMMA cement is not a glue, therefore getting the best and widest possible interdigitation will optimize the fracture stabilization.

Interface® Bone Fixation Composite

With only 20% of PMMA, Interface® Bone Fixation Composite is a pioneering formulation combining the lowest percentage of PMMA available in the market with the mechanical properties of the high viscosity Cohesion® Bone Cement.

The Interface® Bone Fixation Composite with 65% osteoconductive Hydroxyapatite (HA) crystal shape particles provide a scaffold with a composition very similar to bone making osteointegration possible. Interface® Bone Fixation Composite provides:

- Primary mechanical stability
- Long bone biological apposition

By improving bone cement's mechanical properties, the Cohesion® Bone Cement allows for more accurate and efficient surgical planning related to the treatment of pathological fractures and traumatic fractures. The Cohesion® Bone Cement is ideal for use in vertebroplasty, kyphoplasty, and for the stabilization of bone tumours.

TRAUMATIC FRACTURE

In traumatic VCF with good bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

In pathological VCF with low bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

Cohesion® Bone Cement

Based on more than 50 years of excellent PMMA clinical history, Cohesion®, is a fully bioinert, high viscosity bone cement made with the latest generation of compounds.

The use of Titanium Dioxide instead of Barium Sulfate has been shown to limit the potential of bone osteolysis, thus potentially leading to better long term results. PMMA cement is not a glue, therefore getting the best and widest possible interdigitation will optimize the fracture stabilization.

Interface® Bone Fixation Composite

With only 20% of PMMA, Interface® Bone Fixation Composite is a pioneering formulation combining the lowest percentage of PMMA available in the market with the mechanical properties of the high viscosity Cohesion® Bone Cement.

The Interface® Bone Fixation Composite with 65% osteoconductive Hydroxyapatite (HA) crystal shape particles provide a scaffold with a composition very similar to bone making osteointegration possible. Interface® Bone Fixation Composite provides:

- Primary mechanical stability
- Long bone biological apposition

By improving bone cement's mechanical properties, the Cohesion® Bone Cement allows for more accurate and efficient surgical planning related to the treatment of pathological fractures and traumatic fractures. The Cohesion® Bone Cement is ideal for use in vertebroplasty, kyphoplasty, and for the stabilization of bone tumours.

TRAUMATIC FRACTURE

In traumatic VCF with good bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

In pathological VCF with low bone quality, the ideal fixation solution should incorporate a:

- Safe and effective in primary fixation
- Strong and rigid immediate mechanical fixation
- Strong long term biological apposition
- Primary mechanical stability
- Long bone biological apposition

Cohesion® Bone Cement

Based on more than 50 years of excellent PMMA clinical history, Cohesion®, is a fully bioinert, high viscosity bone cement made with the latest generation of compounds.

The use of Titanium Dioxide instead of Barium Sulfate has been shown to limit the potential of bone osteolysis, thus potentially leading to better long term results. PMMA cement is not a glue, therefore getting the best and widest possible interdigitation will optimize the fracture stabilization.

Interface® Bone Fixation Composite

With only 20% of PMMA, Interface® Bone Fixation Composite is a pioneering formulation combining the lowest percentage of PMMA available in the market with the mechanical properties of the high viscosity Cohesion® Bone Cement.

The Interface® Bone Fixation Composite with 65% osteoconductive Hydroxyapatite (HA) crystal shape particles provide a scaffold with a composition very similar to bone making osteointegration possible. Interface® Bone Fixation Composite provides:

- Primary mechanical stability
- Long bone biological apposition

By improving bone cement's mechanical properties, the Cohesion® Bone Cement allows for more accurate and efficient surgical planning related to the treatment of pathological fractures and traumatic fractures. The Cohesion® Bone Cement is ideal for use in vertebroplasty, kyphoplasty, and for the stabilization of bone tumours.